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Adsorbate Interactions 
and Surface Excess Entropy 
L. K. Runnels 1 
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Using the Gibbs definition of surface excess properties and classical statistics 
of the adsorbed molecules, it is shown that interactions between these 
molecules can in some cases increase the surface excess entropy. This is in 
contradistinction to the classical result for a field-free bulk phase gas, but 
similar to effects which are possible for quantum gases. 
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1. I N T R O D U C T I O N  

The entropy of a thermodynamic system is a convenient measure of the degree 
of order in the system. In the classical case the absolute entropy of a noninter- 
acting collection of molecules is given by the Sackur-Tetrode equation and it 
becomes possible to relate departures from the ideal entropy to the inter- 
molecular interactions. A well known result for the slightly imperfect classical 
gas is that any interaction between molecules--whether attractive, repulsive, 
or both--reduces the entropy of the gas, relative always to the entropy 
it would have at the same temperature and density but with no interactions. 

In the case of a quantum gas more care is required to determine the 
effect on entropy of interactions between particles, since first the one-particle 
states and the symmetry requirements must be analyzed. If  the entropy is 
developed in a power series in the particle density, each of the terms (beyond 
the first) typically contains both statistics effects and interaction effects. 
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Recently Callaway m has pursued this question with regard to a high- 
temperature, low-density collection of electrons in a solid, with the electron 
interaction described by the Hubbard Hamiltonian. The resulting equations 
for the interaction effect on the entropy depend on band structure, but it 
was shown that for certain model band structures the leading term could 
be positive. If  an interpretation in terms of order is forced, it would be 
necessary--under these conditions--to admit that the effect of the electron 
interactions is to increase the disorder in the system. 

This somewhat surprising result raises the question of whether it is 
peculiar to the quantum system. One purpose of this report is to point out 
that there are, in a sense, classical analogs--strictly classical systems in which 
the low-density effect of interparticle interaction is an increase in system 
entropy. The clue is in the dependence of the quoted electron result on the 
one-particle band structure. The classical case mentioned at the outset 
refers to field-free particles restricted in their motion only to remain inside 
some volume V. If  there were a more profound ordering effect on the single 
particles--analogous to the combined effects of quantum statistics and crystal 
lattice potentials--then it is conceivable that particle interaction could in 
part break up the order induced by the external field. 

We present here the analysis of such a situation, and one of interest in 
its own right: the classical statistics of particles "adsorbed on" a surface. In 
this case it is the surface which provides the external field; there are 
undoubtedly other examples. In the following section we summarize the 
statistical thermodynamics of the surface phase, after Gibbs, and subsequently 
we specialize to a classical treatment of the entropy of the surface phase. 

2. T H E R M O D Y N A H I C S  

The Gibbs approach to the concept of the surface phase is based on 
the comparison of an actual system(parameters T, V,/~, 6g)with a hypothetical 
system which is identical to the actual one except that the surface interaction 
has been "switched off. ''(~ The (grand canonical) parameters of the hypo- 
thetical system are thus only T, V, and/z (temperature, volume, and chemical 
potential). The area 6g does not occur here. Extensive thermodynamic 
properties of the hypothetical reference system are identified by a superscript 
zero, while those of the actual system are unadorned with superscripts. In 
general these extensive properties differ; an exception is the independent 
variable V = V ~ and another special case is 6g~ 0. For other extensive 
properties the difference defines the surface excess property and are identified 
by superscript (r. For example, the surface excess number of molecules and 
the surface excess entropy are given by 

N '~ = N --  N ~ S" = S - -  S O (1) 
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It is traditional to denote b y / "  (with no ~) the surface excess concentration, 

1" = N " / ~  (2) 

In this approach F can be either positive or negative, depending on the 
interaction with the surface. 

In the presence of the surface a new term must be incorporated into the 
basic equation for the differential of E, the internal energy: 

dE = T d S  - -  p d V  - -  cp d ~  -}- i ~ d N  (3) 

where p is the bulk phase pressure and q0 is the "spreading pressure." Similarly 
we have for the Hemholtz free energy A and the Gibbs free energy G 

dA - -  - - S  d T  - -  p d V  - -  q~ dgg + I~ d N  
(4) 

dG = - - S  d T  -[- V dp - -  cp d ~  + l~ d N  

Integrating Eq. (3) at constant intensive variables gives 

E =- T S  - -  p V - -  ? )~  -k txN (5) 

and consequently 

G - -  U ~  - -  ~6~ (6) 

It is important to recognize that the chemical potential is no longer just the 
Gibbs free energy per molecule. 

We introduce statistical theory through the grand canonical ensemble: 

3(T, V, 6g,/z) = ~ QN(T, V, 6g) A N (7) 
N 

where QN = e-A/leT iS the canonical partition function and ,~ = e~/~v. 
Through standard techniques--most easily by the maximum term method-- 
it is found that the connection between S and the thermodynamics is 

In S = ( p V - k  ~v6g)/kT (8) 

The working equation for the surface-containing system is then 

d ( k T l n  S )  = S d T  + p d V  + q~ d6g 4:- N dtz (9) 

The reference system--with the surface interaction switched off--is 
similarly described by 

In S ~ -- p V / k T  (lOa) 

d ( k T l n  S ~ = S o d T  § p d V  + N ~  dtz (10b) 
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where the surface term is absent. With the view of obtaining virial expansions 
we introduce the activity series 

V -1 In 3 : ~ bj)t~ (11) 

which parallels the usual expansion 

V -1 In S ~ = ~ bflA j (12) 

The coefficients bj are functionally related to the canonical partition functions 
Qr V, 6g) in exactly the same way the reference coefficients are related to 
surface-free canonical functions Qfl(T, V). 

By subtracting Eq. (12) from (11)and using Eqs. (8)and (10a), we have 
the activity expansion of the spreading pressure 

~/k r  = (v/~) y. 6jA~ (13) 

where/Jj ~ bj -- bfl. Similarly we find the activity expansion of _P, 

_P = (V/6g) ~ j[@J (14) 

In the usual way the activity t is eliminated from Eqs. (13) and (14) to produce 
the virial expansion 

~/kr  = r + ~2(r ) / '2  + -.- (15) 
where 

$~ = - (e t /v )  ~/~? (16) 

Higher order terms could also be obtained, but we stop with the first nonideal 
term. We have been following the notation and technique of Hill (~) thus far 
in this section. 

In the following section we will employ these relationships to study the 
entropy of the "surface phase"--more correctly, the surface excess entropy. 
Here, however, we wish to show the basis for the statements made earlier 
about the entropy of the slightly imperfect bulk phase gas. Standard thermo- 
dynamic arguments show that for any gas the entropy is given by see, e.g., 
Ref. 3) 

( ] 1 @ 

(We are suppressing the superscript zero since the remainder of this section 
is devoted entirely to the surface free case.) 

We now introduce the usual virial expansion for the bulk gas, 

p/kT = p + B2(T)p~ + ".- (18) 
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which is analogous to Eq. (15). Here p = iV /V  is the number density. I f  
I f  A S  = S - -  Siaeal,  we have from Eqs. (17) and (18) 

A S  -~ - -  [(N2k/V'2)(B2 + T ~B2/c3T) + ...1 d V '  
V 

- -  (Nzk /V) (B~  + T eB2/~T) + .." (19) 

where the higher-order terms may be omitted if V is sufficiently large. Thus 
far the argument is general, but at this point we assume that the molecules 
may be described classically--at least insorfar as their relative motion is 
concerned. In that case the second virial coeff• has the form 

Bz(T) == --(2Q) -z J'A2 dRxz (20) 

where RI~ stands for the position and orientation (if not monatomic) of 
molecule 2 relative to molecule 1. The factor ,(2 arises from the integration 
over the orientations of a single molecule. In any event, the integrand is 

f~2 = e x p [ - - U ( R z 2 ) / k T ]  - -  1 (21) 

where U is the interaction potential. 
With Eqs. (20) and (21) we may evaluate the leading term in the series 

(19), since 

B2 + T ~B2/~T = --(2g2) -1 f [e -y -- 1 + ye  -'~] dR12 (22) 

where y = U/kT .  But the integrand e -u -- 1 + ye  -~ is nowhere positive, so 
the integral is negative and so is AS ,  whether U is attractive, repulsive, or some 
combination of both. 

3. S U R F A C E  EXCESS E N T R O P Y  

Our goal now is to obtain equations analogous to Eqs. (17) and (19) 
for the surface excess entropy S ~, with p replaced by/~. To this end, Eqs.((9)- 
(12) result in 

so= (~/~T)(kTV z ~j~) 

= kV x [~ + T ; / -  (t~/kT)j6,] ~J 

= k v  Z (~, + v6,') a~ - o , 5 , / 7  ~ (23) 

where Eq. (14) has been used to effect the last step. The prime denotes the 
temperature derivative. 

The next step is to invert Eq. (14) to obtain a/- '  expansion of ,~ to insert 
in Eq. (23). Since also t z /T  - -  k In A, it is possible to develop the entire right- 
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hand side of Eq. (23) as a function of the surface concentration F. The result, 
through the second-order terms j = 2, is 

where 

and 

s ~ = s o  + ( ~ F 2 k / V ) ~  
i dea l  (24) 

5'~ = ({~f)2 --  2{)2T{); + {)iT{)2')/{h a (26) 

Equations (24)-(26) for the surface entropy are general and independent of 
the mechanics obeyed by the molecules, as are the relationships to canonical 
partition functions: 

/~1 = (Q1 - Ql~ 
(27) 

{~ = {(Qz - QlZ/2) - [Q0 _ (Q O)~/2]}/v 

To proceed further, we make some simplifying assumptions. The first 
is that we are dealing with a monatomic gas which may be described classi- 
cally. We assume furthermore that the potential energy of a configuration 
of molecules may be represented additively by a one-body interaction with 
the surface [u*(r~) ~ u~*] and pair interactions between molecules 
[u(r/3 ~ u/t]. We will also need to assume that both potentials u* and u 
vanish for large arguments sufficiently rapidly for certain integrals (of Mayer 
functions) to converge and be volume independent. 

Under these assumptions the momentum contributions to the interaction 
term 5f all cancel and will henceforth be suppressed altogether. The 
remaining (configurational) factors are readily found to be 

~: = V-: ( f l *  dr: 
d (28) 

where f l* = exp(--]3ut*) -- 1, f ~  = exp[--/?(ul* + u2*] -- 1, and fi~ = 
exp(--/~u12) -- 1, with 13 = 1/kT.  Additionally the temperature derivatives 
are given by 

T @  -~ V -~ f ~u~*(f~* + 1) drt 

T@ = (2V) -~ f f  [[3u~2(fa~ + 1)f* (29) 

where u*2 = ul* + us*. 

S]ae~ 1 = k V(b 1 + T{h')(CIF/V{h) --  ~ I ' k  ln(CIF/V/~a) (25) 
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If Eqs. (28) and (29) are inserted in Eq. (26), the result is the desired 
analog of the bulk phase formulas (19) and (22). It is, however, considerably 
more complex and no obvious statements about the sign of the interaction 
term 5O present themselves. We can, in fact, see that 5O can have either sign 
by considering the high-temperature, weak-interaction limit. That is, we 
suppose that flu1* ~ l and fiuij ~ 1, so that fi* ~ f lui*,f~ ~ fluE., and 
f.j ~ fiu~j. Making these substitutions in the preceding equations leads 
in a straightforward way to the simple result 

2 

Supposing u~* to be negative everywhere (so that / - '  > 0), it is clear that 5O 
is positive if ule is everywhere--or predominantly--negative. 

4. D ISCUSSION 

We have shown that it is possible for the interaction entropy to be positive 
for a classical gas in the vicinity of an attracting surface. To obtain this 
result, it is necessary to approach the surface excess properties from the 
Gibbs point of view. If the surface phase were described in an ad hoc fashion 
as a two-dimensional system, (2) this conclusion could not be reached. The 
earlier discussion of the three-dimensional bulk phase gas would apply 
equally well and the two-dimensional interaction entropy would necessarily 
be negative. It may be true that physically reasonable forms of the potentials 
u~* and u~j would produce negative values for 5 ~ On the other hand, a 
heuristic explanation of the positive 5 ~ for attractive interactions seems valid: 
The "accessible" volume near the surface available to molecule 2 is extended 
to include the region near molecule 1, if the interactions are predominantly 
attractive. This greater "accessible" region of favorable energy is tantamount 
to increased entropy. 
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Professor H. S. Left has kindly pointed out that he has proved more 
generally [Am. J. Phys. 37, 548 (1969)] the negative effect of interactions on 
entropy, in the field-free case. Classical mechanics is assumed, but not low 
density. 
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